You are viewing documentation for Kubernetes version: v1.23

Kubernetes v1.23 documentation is no longer actively maintained. The version you are currently viewing is a static snapshot. For up-to-date documentation, see the latest version.

Example: Deploying PHP Guestbook application with Redis

This tutorial shows you how to build and deploy a simple (not production ready), multi-tier web application using Kubernetes and Docker. This example consists of the following components:

  • A single-instance Redis to store guestbook entries
  • Multiple web frontend instances

Objectives

  • Start up a Redis leader.
  • Start up two Redis followers.
  • Start up the guestbook frontend.
  • Expose and view the Frontend Service.
  • Clean up.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. It is recommended to run this tutorial on a cluster with at least two nodes that are not acting as control plane hosts. If you do not already have a cluster, you can create one by using minikube or you can use one of these Kubernetes playgrounds:

Your Kubernetes server must be at or later than version v1.14. To check the version, enter kubectl version.

Start up the Redis Database

The guestbook application uses Redis to store its data.

Creating the Redis Deployment

The manifest file, included below, specifies a Deployment controller that runs a single replica Redis Pod.

# SOURCE: https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook
apiVersion: apps/v1
kind: Deployment
metadata:
  name: redis-leader
  labels:
    app: redis
    role: leader
    tier: backend
spec:
  replicas: 1
  selector:
    matchLabels:
      app: redis
  template:
    metadata:
      labels:
        app: redis
        role: leader
        tier: backend
    spec:
      containers:
      - name: leader
        image: "docker.io/redis:6.0.5"
        resources:
          requests:
            cpu: 100m
            memory: 100Mi
        ports:
        - containerPort: 6379
  1. Launch a terminal window in the directory you downloaded the manifest files.

  2. Apply the Redis Deployment from the redis-leader-deployment.yaml file:

    kubectl apply -f https://k8s.io/examples/application/guestbook/redis-leader-deployment.yaml
    
  3. Query the list of Pods to verify that the Redis Pod is running:

    kubectl get pods
    

    The response should be similar to this:

    NAME                           READY   STATUS    RESTARTS   AGE
    redis-leader-fb76b4755-xjr2n   1/1     Running   0          13s
    
  4. Run the following command to view the logs from the Redis leader Pod:

    kubectl logs -f deployment/redis-leader
    

Creating the Redis leader Service

The guestbook application needs to communicate to the Redis to write its data. You need to apply a Service to proxy the traffic to the Redis Pod. A Service defines a policy to access the Pods.

# SOURCE: https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook
apiVersion: v1
kind: Service
metadata:
  name: redis-leader
  labels:
    app: redis
    role: leader
    tier: backend
spec:
  ports:
  - port: 6379
    targetPort: 6379
  selector:
    app: redis
    role: leader
    tier: backend
  1. Apply the Redis Service from the following redis-leader-service.yaml file:

    kubectl apply -f https://k8s.io/examples/application/guestbook/redis-leader-service.yaml
    
  2. Query the list of Services to verify that the Redis Service is running:

    kubectl get service
    

    The response should be similar to this:

    NAME           TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)    AGE
    kubernetes     ClusterIP   10.0.0.1     <none>        443/TCP    1m
    redis-leader   ClusterIP   10.103.78.24 <none>        6379/TCP   16s
    

Set up Redis followers

Although the Redis leader is a single Pod, you can make it highly available and meet traffic demands by adding a few Redis followers, or replicas.

# SOURCE: https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook
apiVersion: apps/v1
kind: Deployment
metadata:
  name: redis-follower
  labels:
    app: redis
    role: follower
    tier: backend
spec:
  replicas: 2
  selector:
    matchLabels:
      app: redis
  template:
    metadata:
      labels:
        app: redis
        role: follower
        tier: backend
    spec:
      containers:
      - name: follower
        image: gcr.io/google_samples/gb-redis-follower:v2
        resources:
          requests:
            cpu: 100m
            memory: 100Mi
        ports:
        - containerPort: 6379
  1. Apply the Redis Deployment from the following redis-follower-deployment.yaml file:

    kubectl apply -f https://k8s.io/examples/application/guestbook/redis-follower-deployment.yaml
    
  2. Verify that the two Redis follower replicas are running by querying the list of Pods:

    kubectl get pods
    

    The response should be similar to this:

    NAME                             READY   STATUS    RESTARTS   AGE
    redis-follower-dddfbdcc9-82sfr   1/1     Running   0          37s
    redis-follower-dddfbdcc9-qrt5k   1/1     Running   0          38s
    redis-leader-fb76b4755-xjr2n     1/1     Running   0          11m
    

Creating the Redis follower service

The guestbook application needs to communicate with the Redis followers to read data. To make the Redis followers discoverable, you must set up another Service.

# SOURCE: https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook
apiVersion: v1
kind: Service
metadata:
  name: redis-follower
  labels:
    app: redis
    role: follower
    tier: backend
spec:
  ports:
    # the port that this service should serve on
  - port: 6379
  selector:
    app: redis
    role: follower
    tier: backend
  1. Apply the Redis Service from the following redis-follower-service.yaml file:

    kubectl apply -f https://k8s.io/examples/application/guestbook/redis-follower-service.yaml
    
  2. Query the list of Services to verify that the Redis Service is running:

    kubectl get service
    

    The response should be similar to this:

    NAME             TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)    AGE
    kubernetes       ClusterIP   10.96.0.1       <none>        443/TCP    3d19h
    redis-follower   ClusterIP   10.110.162.42   <none>        6379/TCP   9s
    redis-leader     ClusterIP   10.103.78.24    <none>        6379/TCP   6m10s
    

Set up and Expose the Guestbook Frontend

Now that you have the Redis storage of your guestbook up and running, start the guestbook web servers. Like the Redis followers, the frontend is deployed using a Kubernetes Deployment.

The guestbook app uses a PHP frontend. It is configured to communicate with either the Redis follower or leader Services, depending on whether the request is a read or a write. The frontend exposes a JSON interface, and serves a jQuery-Ajax-based UX.

Creating the Guestbook Frontend Deployment

# SOURCE: https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook
apiVersion: apps/v1
kind: Deployment
metadata:
  name: frontend
spec:
  replicas: 3
  selector:
    matchLabels:
        app: guestbook
        tier: frontend
  template:
    metadata:
      labels:
        app: guestbook
        tier: frontend
    spec:
      containers:
      - name: php-redis
        image: gcr.io/google_samples/gb-frontend:v5
        env:
        - name: GET_HOSTS_FROM
          value: "dns"
        resources:
          requests:
            cpu: 100m
            memory: 100Mi
        ports:
        - containerPort: 80
  1. Apply the frontend Deployment from the frontend-deployment.yaml file:

    kubectl apply -f https://k8s.io/examples/application/guestbook/frontend-deployment.yaml
    
  2. Query the list of Pods to verify that the three frontend replicas are running:

    kubectl get pods -l app=guestbook -l tier=frontend
    

    The response should be similar to this:

    NAME                        READY   STATUS    RESTARTS   AGE
    frontend-85595f5bf9-5tqhb   1/1     Running   0          47s
    frontend-85595f5bf9-qbzwm   1/1     Running   0          47s
    frontend-85595f5bf9-zchwc   1/1     Running   0          47s
    

Creating the Frontend Service

The Redis Services you applied is only accessible within the Kubernetes cluster because the default type for a Service is ClusterIP. ClusterIP provides a single IP address for the set of Pods the Service is pointing to. This IP address is accessible only within the cluster.

If you want guests to be able to access your guestbook, you must configure the frontend Service to be externally visible, so a client can request the Service from outside the Kubernetes cluster. However a Kubernetes user can use kubectl port-forward to access the service even though it uses a ClusterIP.

# SOURCE: https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook
apiVersion: v1
kind: Service
metadata:
  name: frontend
  labels:
    app: guestbook
    tier: frontend
spec:
  # if your cluster supports it, uncomment the following to automatically create
  # an external load-balanced IP for the frontend service.
  # type: LoadBalancer
  #type: LoadBalancer
  ports:
    # the port that this service should serve on
  - port: 80
  selector:
    app: guestbook
    tier: frontend
  1. Apply the frontend Service from the frontend-service.yaml file:

    kubectl apply -f https://k8s.io/examples/application/guestbook/frontend-service.yaml
    
  2. Query the list of Services to verify that the frontend Service is running:

    kubectl get services
    

    The response should be similar to this:

    NAME             TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)    AGE
    frontend         ClusterIP   10.97.28.230    <none>        80/TCP     19s
    kubernetes       ClusterIP   10.96.0.1       <none>        443/TCP    3d19h
    redis-follower   ClusterIP   10.110.162.42   <none>        6379/TCP   5m48s
    redis-leader     ClusterIP   10.103.78.24    <none>        6379/TCP   11m
    

Viewing the Frontend Service via kubectl port-forward

  1. Run the following command to forward port 8080 on your local machine to port 80 on the service.

    kubectl port-forward svc/frontend 8080:80
    

    The response should be similar to this:

    Forwarding from 127.0.0.1:8080 -> 80
    Forwarding from [::1]:8080 -> 80
    
  2. load the page http://localhost:8080 in your browser to view your guestbook.

Viewing the Frontend Service via LoadBalancer

If you deployed the frontend-service.yaml manifest with type: LoadBalancer you need to find the IP address to view your Guestbook.

  1. Run the following command to get the IP address for the frontend Service.

    kubectl get service frontend
    

    The response should be similar to this:

    NAME       TYPE           CLUSTER-IP      EXTERNAL-IP        PORT(S)        AGE
    frontend   LoadBalancer   10.51.242.136   109.197.92.229     80:32372/TCP   1m
    
  2. Copy the external IP address, and load the page in your browser to view your guestbook.

Scale the Web Frontend

You can scale up or down as needed because your servers are defined as a Service that uses a Deployment controller.

  1. Run the following command to scale up the number of frontend Pods:

    kubectl scale deployment frontend --replicas=5
    
  2. Query the list of Pods to verify the number of frontend Pods running:

    kubectl get pods
    

    The response should look similar to this:

    NAME                             READY   STATUS    RESTARTS   AGE
    frontend-85595f5bf9-5df5m        1/1     Running   0          83s
    frontend-85595f5bf9-7zmg5        1/1     Running   0          83s
    frontend-85595f5bf9-cpskg        1/1     Running   0          15m
    frontend-85595f5bf9-l2l54        1/1     Running   0          14m
    frontend-85595f5bf9-l9c8z        1/1     Running   0          14m
    redis-follower-dddfbdcc9-82sfr   1/1     Running   0          97m
    redis-follower-dddfbdcc9-qrt5k   1/1     Running   0          97m
    redis-leader-fb76b4755-xjr2n     1/1     Running   0          108m
    
  3. Run the following command to scale down the number of frontend Pods:

    kubectl scale deployment frontend --replicas=2
    
  4. Query the list of Pods to verify the number of frontend Pods running:

    kubectl get pods
    

    The response should look similar to this:

    NAME                             READY   STATUS    RESTARTS   AGE
    frontend-85595f5bf9-cpskg        1/1     Running   0          16m
    frontend-85595f5bf9-l9c8z        1/1     Running   0          15m
    redis-follower-dddfbdcc9-82sfr   1/1     Running   0          98m
    redis-follower-dddfbdcc9-qrt5k   1/1     Running   0          98m
    redis-leader-fb76b4755-xjr2n     1/1     Running   0          109m
    

Cleaning up

Deleting the Deployments and Services also deletes any running Pods. Use labels to delete multiple resources with one command.

  1. Run the following commands to delete all Pods, Deployments, and Services.

    kubectl delete deployment -l app=redis
    kubectl delete service -l app=redis
    kubectl delete deployment frontend
    kubectl delete service frontend
    

    The response should look similar to this:

    deployment.apps "redis-follower" deleted
    deployment.apps "redis-leader" deleted
    deployment.apps "frontend" deleted
    service "frontend" deleted
    
  2. Query the list of Pods to verify that no Pods are running:

    kubectl get pods
    

    The response should look similar to this:

    No resources found in default namespace.
    

What's next

Last modified March 12, 2022 at 1:22 AM PST: minor wording fix (6b21f286df)